

Journal of Molecular Catalysis B: Enzymatic 10 (2000) 199-206

www.elsevier.com/locate/molcatb

Cloning and overexpression of a cytidine 5'-monophosphate *N*-acetylneuraminic acid synthetase from *Escherichia coli*

Guoqing Xia, Xing Han, Huiping Ding, Shoujun Yang, Shuzheng Zhang, Cheng Jin*

State Key Laboratory of Microbial Resources, Institute of Microbiology, The Chinese Academy of Sciences, Beijing 100080, People's Republic of China

Received 7 May 1999; accepted 20 September 1999

Abstract

The gene for cytidine 5'-monophosphate *N*-acetylneuraminic acid (CMP-NeuAc) synthetase (EC2.7.7.43) was amplified from the total DNA of *Escherichia coli* 44277 through a primer-directed polymerase chain reaction and cloned into pUC19 between the sites *Eco*RI and *Sal*I. The sequence analysis showed the cloned DNA was the same as the published *neuA* except for a codon missing for Asp230 and four base substitutions at the sites 153, 438, 618, and 687. The four base substitutions did not change the amino acid sequence. Based on the preliminary expression experiment and computer-aided analysis of the gene structure, six bases were mutated in order to achieve high-level expression. The gene mutated by PCR was cloned into the expression vector pET15b. Upon the induction of IPTG, the recombinant enzyme was shown to be 26% of the total bacterial proteins, which was 850-fold higher than that of the wild strain. Under the optimal inducing condition, the enzyme yield reached 100 U/1 cell culture. Using the partially purified recombinant enzyme, the synthesis of CMP-NeuAc was carried out in 90% yield. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: CMP-NeuAc synthetase; Overexpression; E. coli

1. Introduction

Cytidine 5'-monophosphate *N*-acetylneuraminic acid (CMP-NeuAc) or sialic acid, as an important component of glycoproteins or glycolipids in mammalian tissues, plays a prominent role in a variety of biological processes, such as cell–cell communication, cell–matrix interaction, adhesion, maintenance of serum glycoproteins in the circulation, and protein targeting

E-mail address: jinc@sun.im.ac.cn (C. Jin).

[1]. NeuAc is also thought to be critical virulence determinant as an important component of extracellular capsular polysaccharides in bacteria [2,3]. The biosynthesis of sialylated glycoconjugates catalyzed by various sialytransferases requires the activated form of NeuAc, CMP-NeuAc, as substrate. CMP-NeuAc is synthesized from CTP and NeuAc by CMP-NeuAc synthetase (EC2.7.7.43), which is found in mammalian cells as well as bacteria (CTP + NeuAc \rightarrow CMP-NeuAc + PPi) [4]. In vitro, CMP-NeuAc can be synthesized enzymatically by means of a CMP-NeuAc synthetase [5]. It is evident that all compounds required, including

^{*} Corresponding author. Tel.: +86-10-62582106; fax: +86-10-62647108.

^{1381-1177/00/\$ -} see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: \$1381-1177(00)00115-6

enzymes, must be available in large quantities at reasonable costs.

CMP-NeuAc synthetase for the preparation of CMP-NeuAc is previously isolated from animal tissues, most commonly from bovine brain. However, animal tissues contain only small amounts of CMP-NeuAc synthetase and are difficult to obtain in large quantities with constant quality. Alternatively, CMP-NeuAc synthetases from bacteria such as Neisseria meningitidis and Escherichia coli have been used for CMP-NeuAc preparation [4,6-9]. CMP-NeuAc synthetase from E. coli was first reported to be purified to homogeneity by Vann et al. [10]. Subsequently, the gene encoding CMP-NeuAc synthetase was sequenced by Zapata et al. [11]. In order to increase the yield of enzyme production, the engineered CMP-NeuAc synthetase gene was constructed and overexpressed to the extent of 8-10% of the soluble E. coli proteins [12]. By modifying the ribosome binding site. the expression of CMP-NeuAc synthetase gene was increased 1000-fold [13].

In this report, the *E. coli* strain 44277 was identified to produce CMP-NeuAc synthetase. The gene coding for *E. coli* 44277 CMP-NeuAc synthetase was cloned and overexpressed in *E. coli* BL21(DE3)pLysS through a primer-directed polymerase chain reaction. The partially purified recombinant enzyme could be used for CMP-NeuAc preparation.

2. Experimental

2.1. Reagents

Inorganic pyrophosphatase, CTP, and *N*-acetylneuraminic acid were from Sigma. Restriction enzymes and T4 DNA ligase were from Promega; Vent DNA polymerase was from Bio Labs. T7 DNA sequencing kit was from Pharmacia. α -³⁵S-dATP was from DuPont. All other biochemical reagents were the highest quality commercially available.

2.2. Bacterial strains and vectors

E. coli strain 44277 was obtained from the China General Microbiological Culture Collection Center (CGMCC). *E. coli* DH5 α was from Bethesda Research Laboratories. *E. coli* JM105 and pKK223-3 were from Pharmacia. *E. coli* BL21(DE3)pLysS and pET-15b were from Novagen. Plasmid pBV220 was a gift from Prof. Yunde Hou (Institute of Virology, Chinese Academy of Medical Sciences, Beijing, China). Unless otherwise indicated, all strains were grown at 37°C in LB medium contained 10 g Bacto tryptone, 5 g Bacto yeast extract and 10 g NaCl/1 of culture medium. Growth medium was supplemented with 60 µg/ml ampicillin when required.

2.3. DNA manipulations and sequencing

All DNA manipulations were carried out using standard techniques described by Sambrook et al. [14] or by the manufacturers' instructions. Sequencing was performed by the dideoxy method of Sanger et al. [15] according to the directions of the Sequenase kit. Oligonucleotides were synthesized using a Beckman Oligo 1000 DNA synthesizer.

2.4. Enzyme assays

CMP-NeuAc synthetase activity was assayed by coupling the synthetase reaction to inorganic pyrophosphatase and monitoring the production of inorganic phosphate with malachite green reagent [16]. The standard assay mixture contained 0.1 M Tris–HCl (pH 9.0), 10 mM MgCl₂, 5.0 mM NeuAc, 1.5 mM CTP and 10 U of inorganic pyrophosphatase in a final volume of 0.5 ml. The reaction was initiated by the addition of approximate 5 mU of CMP-NeuAc synthetase. After incubation of reaction mixture at 25°C for 10 min, one aliquot of 30 μ l was removed and added directly to 0.8 ml malachite green reagent (malachite green reagent: 3 ml of 0.045% malachite green hydrochloride and 1 ml of 4.2% ammonium molybdate dissolved in 4 N HCl were mixed, and 80 μ l of sterox was added to the mixture). After 1.5 min, the malachite green reaction was neutralized by the addition of 0.1 ml of sodium citrate solution. The absorbency of the solution was determined at 646 nm. One unit (U) of activity is defined as the amount of enzyme required to produce 1 μ mol of PPi (2 μ mol Pi) from CTP and NeuAc per minute under the standard assay conditions.

Protein concentrations were determined by using the method described by Lowry et al. [17]. Bovine serum albumin was used as a standard.

2.5. Screening of CMP-NeuAc synthetase positive strain

20 strains of *E. coli* serotype K1 K9 (CGMCC) were grown in 50 ml of medium contained 10 g/l sorbitol, 2.5 g/l yeast extract, 11 g/l K₂HPO₄, 2.5 g/l (NH₄)₂SO₄, and 1 g/l MgSO₄ \cdot 7H₂O (pH 6.5) at 37°C overnight. The cells were collected by centrifugation and resuspened in 1 ml of 50 mM Tris–HCl (pH 9.0) containing 1 mM DTT and 20 mM of MgCl₂. After sonication, the cell lysate was taken for enzyme assay.

2.6. Gene isolation

Based on the nucleotide sequence encoding for *E. coli* CMP-NeuAc synthetase [11], primers were designed as P1: 5'-CAGAATTCATG-AGAACAAAAATTATTGCG and P2: 5'-CCGTCGACTCATTTAACAATCTCCGCT, and the sites of *Eco*RI and *Sal*I was introduced to 5' terminal of P1 and P2, respectively. For PCR amplification, genomic DNA from *E. coli* 44277 was digested with *Eco*RI and combined with 100 pmol of each primer in a 100- μ l reaction mixture. Thirty cycles (94°C for 1 min, 53°C for 2 min, and 72°C for 1.5 min) were run using Vent DNA polymerase. A 1.3-kb of DNA fragment was amplified and digested with *Eco*RI and *Sal*I, then cloned into the sites between *Eco*RI and *Sal*I of pUC19. The resulting plasmid was designated as pT74. Its construction was finally confirmed by restriction enzyme digestion and DNA sequencing.

2.7. Construction of pET-CS2

CMP-NeuAc synthetase gene cloned in pT74 was mutated by PCR using 5' primer containing a *NcoI* site (P53: 5'-CT*CCATGG*CTACCAA-GATTATTGCGATAATTCC) and 3' primer containing *Bam*HI site (P32: 5'-AT*GGATCCT*-TATTTAACAATCTCCGCT). PCR reaction was carried out with Vent DNA polymerase by 30 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 1.5 min. The amplified and digested 1.3-kb *NcoI/Bam*HI fragments were inserted into the corresponding sites of pET-15b, and the resulting plasmid was designated as pET-CS2.

2.8. Preparation of modified CMP-NeuAc synthetase

The cell pellet obtained from 1 l of induced culture of *E. coli* DH5 α /pET-CS2 (about 6 g) was resuspended in 80 ml of 50 mM Tris-HCl (pH 8.0) and the cells were disrupted by sonication. The cellular debris was removed by centrifugation. The resultant crude extract, with a CMP-NeuAc synthetase specific activity of 0.095 U/mg (99.6 U), was precipitated by the addition of solid ammonium sulfate. The precipitated proteins of 35-60%s were collected and dissolved in 50 ml of 50 mM Tris-HCl (pH 8.0). After dialysis against 3×11 of 50 mM Tris-HCl buffer (pH 7.6) containing 100 mM NaCl, the enzyme solution was applied to a DEAE-cellulose column $(2.5 \times 30 \text{ cm})$ preequilibrated with 50 mM Tris-HCl buffer (pH 7.6) containing 100 mM NaCl. The column was washed with one column volume of initial buffer to remove unbound proteins. The enzyme was eluted with 2 1 of linear gradient of NaCl from 0.1 to 0.25 M. The enzyme fractions were pooled, dialyzed against the initial buffer and

concentrated with Immersible CX- 10^{TM} (NMWL 10,000-Da, Millipore). All purification steps were carried out at 4°C.

2.9. Synthesis of CMP-NeuAc

The synthetic reaction was carried out in 10 ml of reaction mixture containing 50 mM Tris-HCl (pH 8.5), 50 mM MgCl₂, 0.28 g CTP (0.5 mM), and 0.16 g NeuAc. The reaction was initiated by the addition of 10 U of modified CMP-NeuAc synthetase. The reaction was allowed to proceed for 5 h with stirring at 22°C and the pH was maintained at 8.5 by manual addition of 1 N NaOH. The resultant precipitate was removed by filtration and washed with 25 ml distilled water. Ethanol was added to the filtrate and the mixture (9:1 v/v) was allowed to stand at room temperature for 5 h. The precipitated CMP-NeuAc was isolated by centrifugation $(10,000 \times g \text{ for } 10 \text{ min})$ and lyophilized.

The synthesized CMP-NeuAc was analyzed by the thin-layer chromatography (TLC) using 95% ethanol/1 M ammonium acetate (pH 6.0) (7:3) as solvent. The amount of CMP-NeuAc was determined at 254 nm using the commercial CMP-NeuAc as standard.

3. Results and discussion

3.1. Cloning of CMP-NeuAc synthetase gene from E. coli 44277

Among 20 strains of *E. coli* serotype K1K9 obtained from CGMCC, only strain 44277 was found to produce CMP-NeuAc synthetase with a yield of 0.0001 U/ml. Thus, *E. coli* 44277 was used as native source for CMP-NeuAc synthetase gene isolation. A 1.3-kb fragment was amplified by PCR as described in the Experimental (Fig. 1) and cloned into the sites between *Eco*RI and *Sal*I of pUC19 to yield pT74. When the genomic DNA, instead of *Eco*RI digested fragments, was used as tem-

Fig. 1. Electrophoresis (1% agarose) of the primer-directed PCR products from *E. coli* 44277. Lane 1: molecular weight markers; lane 2: the PCR product obtained as described in the Experimental.

plate, low amplification and non-specific products were observed, which may be due to the difficulties of denaturing and annealing of long chain of DNA template.

The cloned 1.3-kb fragment was confirmed to be CMP-NeuAc synthetase gene by restriction enzyme analysis and sequencing. However, according to the sequencing results, four bases of silent mutation (A153 was substituted by T, A438 by G, A618 by G, and T687 by A) and one codon deletion (Asp230) were found in the coding region (Fig. 2).

3.2. Overexpression of CMP-NeuAc synthetase

Since the extremely low activity of CMP-NeuAc synthetase in wild type *E. coli* is thought to be due to a low efficiency ribosome binding site [18], the Shine–Dalgarno sequence on the expression vector pET-15b was used in this study. In addition, the codon usage should be taken into consideration as another factor affecting the overexpression of CMP-NeuAc synthetase gene in *E. coli* [12]. The native CMP-NeuAc synthetase, therefore, was engineered by

1	ATG	AGA	ACA	AAA	ATT	ATT	GCG	ATA	ATT	CCA	GCC	CGT	AGT	GGA	TCT	AAA	GGG	TTG	AGA	AAT
1	Met	Arg	Thr	Lys	Ile	Ile	Ala	Ile	Ile	Pro	Ala	Arg	Ser	Gly	Ser	Lys	Gly	Leu	Arg	Asn
61	AAA	AAT	GCT	TTG	ATG	CTG	ATA	GAT	AAA	CCT	CTT	CTT	GCT	TAT	ACA	ATT	GAA	GCT	GCC	TTG
21	Lys	Asn	Ala	Leu	Met	Leu	Ile	Asp	Lys	Pro	Leu	Leu	Ala	Tyr	Thr	Ile	Glu	Ala	Ala	Leu
121	CAG	TCA	GAA	ATG	$\mathbf{T}\mathbf{T}\mathbf{T}$	GAG	AAA	GTA	ATT	GTG	ACT	ACT	GAC	TCC	GAA	CAG	TAT	GGA	GCA	ATA
41	Gln	Ser	Glu	Met	Phe	Glu	Lys	Val	Ile	Val	Thr	Thr	Asp	Ser	Glu	Gln	Tyr	Gly	Ala	Ile
181	GCA	GAG	TCA	TAT	GGT	GCT	GAT	TTT	TTG	CTG	AGA	CCG	GAA	GAA	CTA	GCA	ACT	GAT	AAA	GCA
61	Ala	Glu	Ser	Tyr	Gly	Ala	Asp	Phe	Leu	Leu	Arg	Pro	Glu	Glu	Leu	Ala	Thr	Asp	Lys	Ala
241	TCA	TCA	$\mathbf{T}\mathbf{T}\mathbf{T}$	GAA	TTT	ATA	AAA	CAT	GCG	TTA	AGT	ATA	TAT	ACT	GAT	TAT	GAG	AGC	TTT	GCT
81	Ser	Ser	Phe	Glu	Phe	Ile	Lys	His	Ala	Leu	Ser	Ile	Tyr	Thr	Asp	Tyr	Glu	Ser	Phe	Ala
301	TTA	TTA	CAA	CCA	ACT	TCA	CCC	TTT	AGA	GAT	TCG	ACC	CAT	ATT	ATT	GAG	GCT	GTA	AAG	TTA
101	Leu	Leu	Gln	Pro	Thr	Ser	Pro	Phe	Arg	Asp	Ser	Thr	His	Ile	Ile	Glu	Ala	Val	Lys	Leu
361	TAT	CAA	ACT	TTA	GAA	AAA	TAC	CAA	TGT	GTT	GTT	TCT	GTT	ACT	AGA	AGC	AAT	AAG	CCA	TCA
121	Tyr	Gln	Thr	Leu	Glu	Lys	Tyr	Gln	Cys	Val	Val	Ser	Val	Thr	Arg	Ser	Asn	Lys	Pro	Ser
421	CAA	ATA	ATT	AGA	CCA	TTG	GAT	GAT	TAC	TCG	ACA	CTG	TCT	TTT	TTT	GAC	CTT	GAT	TAT	AGT
141	Gln	Ile	Ile	Arg	Pro	Leu	Asp	Asp	Tyr	Ser	Thr	Leu	Ser	Phe	Phe	Asp	Leu	Asp	Tyr	Ser
481	AAA	TAT	AAT	CGA	AAC	TCA	ATA	GTA	GAA	TAT	CAT	CCG	AAT	GGA	GCT	ATA	TTT	ATA	GCT	AAT
161	Lys	Tyr	Asn	Arg	Asn	Ser	Ile	Val	Glu	Tyr	His	Pro	Asn	Gly	Ala	Ile	Phe	Ile	Ala	Asn
541	AAG	CAG	CAT	TAT	CTT	CAT	ACA	AAG	CAT	TTT	TTT	GGT	CGC	TAT	TCA	СТА	GCT	TAT	ATT	ATG
181	Lys	Gln	His	Tyr	Leu	His	Thr	Lys	His	Phe	Phe	Gly	Arg	Tyr	Ser	Leu	Ala	Tyr	Ile	Met
601	GAT	AAG	GAA	AGC	TCT	TTG	GAT	ATA	GAT	GAT	AGA	ATG	GAT	TTC	GAA	CTT	GCA	ATT	ACC	ATT
201	Asp	Lys	Glu	Ser	Ser	Leu	Asp	Ile	Asp	Asp	Arg	Met	Asp	Phe	Glu	Leu	Ala	Ile	Thr	Ile
661	CAG	CAA	AAA	AAA	AAT	AGA	CAA	AAA	ATA	CTT	TAT	CAA	AAC	ATA	CAT	AAT	AGA	ATC	AAT	GAG
221	Gln	Gln	Lys	Lys	Asn	Arg	Gln	Lys	Ile	*Leu	Tyr	Gln	Asn	Ile	His	Asn	Arg	Ile	Asn	GIU
721	AAA	CGA	AAT	GAA	TTT	GAT	AGT	GTA	AGT	GAT	ATA	ACT	TTA	ATT	GGA	CAC	TCG	CTG	TTT	GAT
241	Lys	Arg	Asn	Glu	Phe	Asp	Ser	Val	Ser	Asp	Ile	Thr	Leu	Ile	Gly	His	Ser	Leu	Phe	Asp
781	TAT	TGG	GAC	GTA	AAA	AAA	ATA	AAT	GAT	ATA	GAA	GTT	AAT	AAC	TTA	GGT	ATC	GCT	GGT	ATA
261	Tyr	Trp	Asp	Val	Lys	Lys	Ile	Asn	Asp	Ile	Glu	Val	Asn	Asn	Leu	GLY	Ile	Phe	GIY	lle
841	AAC	TCG	AAG	GAG	TAC	TAT	GAA	TAT	ATT	ATT	GAG	AAA	GAG	CTG	ATT	GTT	AA'I'	TTC	GGA	GAG
281	Asn	Ser	Lys	Glu	Tyr	Tyr	Glu	Tyr	Ile	Ile	Glu	Lys	GLu	Leu	lle	Val	Asn	Pne	GIY	GIU
901	TTT	GTT	TTC	ATC	TTT	TTT	GGA	ACT	AAT	GAT	ATA	GTT	GTT	AGT	GAT	TGG	AAA	AAA	GAA	GAC
301	Phe	Val	Phe	Ile	Phe	Phe	GLY	Thr	Asn	Asp	Ile	Val	Val	Ser	Asp	Trp	Lys	Lys	GIU	Asp
961	ACA	TTG	TGG	TAT	TTG	AAG	AAA	ACA	TGC	CAG	TAT	ATA	AAG	AAG	AAA	AAT	GCT	GCA	TCA	AAA
321	Thr	Leu	Trp	Tyr	Leu	Lys	Lys	Thr	Cys	GIn	Tyr	lle	Lys	Lys	Lys	ASN	ALA	ALA	Ser	тда
1121	ATT	TAT	TTA	TTG	TCG	GTT	CCT	CCT	GTT	TTT	GGG	CGT	ATT	GAT	CGA	GAT	AAT	AGA	ATA	AII
341	lle	Tyr	Leu	Leu	Ser	Val	Pro	Pro	Val	Pne	GIY	Arg	IIe	Asp	Arg	Asp	ASI	Arg	mmc	110
1181	AAT	GAT	TTA	AAT	TCT	TAT	CTT	CGA	GAG	AA'I'	GTA	GAT	TTT	GCG	AAG	TTT	ATT	AGC	TTG	GAT
361	Asn	Asp	Leu	Asn	Ser	Tyr	Leu	Arg	GLU	Asn	Val	Asp	Pne	ALA	Lys	Pne	11e	Ser	цеи	ASP
1241	CAC	GTT	ТГА	AAA	GAC	TCT	TAT	GGC	AAT	CTA	AAT	AAA	ATG	TAT	ACT	TAT	GAT	GGC	TTA	ULICAT
1981	HIS	val	Leu	Lys	Asp	ser	Tyr	Ala	ASN	Leu	ASD	Lys	met	Tyr	Thr	TAL	ASP	GLY 777	лец	nis
1301	TTT	TAA	AGT	AAT	GGG	TAT	ACA	GTA	TTA	GAA	AAC	GAA	ATA	000	GAG	ATT	GIT Wol	AAA	1GA //	
401	гhе	ASD	ser	ASD	GTA	тvr	Thr	vai	ьeu	GIU	ASD	GIU	тте	ALA	GIU	тте	vai	шyS	11	

Fig. 2. Nucleotide sequence and deduced amino acid sequence of CMP-NeuAc synthetase from *E. coli* 44277. The nucleotides that differ from the reported sequence are highlighted. The star indicates the deletion of Asp230.

modifying three codons of 5'-terminus and the stop codon. Recently, the occurrence of a low efficient codon for Arg in the translation initial region has been shown to decrease the expression of β -galactosidase [19]. A low-frequency Arg codon was found right behind the initial codon in the synthetase encoding DNA. So the second codon (AGA for Arg2) of the cloned synthetase gene was mutated to GCT encoding for Ala, assuming this amino acid residue, which can occur in all secondary structures of protein

would not cause conformational change of active essential N-terminal of the enzyme. With this manipulation, a *NcoI* site containing the initial codon could be introduced for subcloning at the multiple cloning site of pET-15b. Also, to avoid series connection of low-frequency codons in the translation initial region, the codons for Thr3 and Lys4 were mutated to those expected in genes encoding highly expressed *E. coli* proteins [20]. The sequence of engineered 5'terminus of the enzyme gene is shown in Fig. 3.

Synthetase sequence: ATG GGM ACG AAG ATT ATT GCG ATA ATT CCA Engineered sequence: ATG AGA ACA AAA ATT ATT GCG ATA ATT CCA

Fig. 3. Sequence of the native and engineered 5'-terminus of the CMP-NeuAc synthetase encoding gene. The mutated nucleotides are marked by highlight.

TGA, a low-frequency stop codon in E. coli. was modified to TAA, which was followed by another in-frame TAA on the vector pET-15b and therefore could efficiently terminate the translation. The resulting fragment was then ligated to the NcoI/BamHI sites of expression vector pET-15b to yield pET-CS2. This construct, transformed into E. coli BL21(DE3)pLvsS, gave expression levels 850-fold higher than that of the wild type and resulted in typical production of 0.085 U/ml of the cell culture. A 49-kDa protein was induced (Fig. 4) and expressed to 5.6-8% of the soluble proteins or 26.5% of the total E. coli proteins was achieved. Previously, the overexpression to the extent of 8-10% of the soluble *E. coli* protein was achieved by modifying both the parent Shine-Dalgarno sequence and the codons for the second to the ninth amino acid residue of N-terminal to those expected in genes encoding highly expressed E. coli proteins [12]. Only by modifying the ribosome binding site, the overexpression of the modified CMP-NeuAc synthetase at a level of approximately 1000-fold (100 units /1) higher than that of wild type was also achieved. For easy selection of positive clone, the modified enzyme was fused with a decapeptide tag. However, the tagged enzyme was found to be

10 times less stable than the wild type and the difference in pH optimum was observed [13,18]. Our results showed that the modified *E. coli* CMP-NeuAc synthetase, only by replacing six bases in four codons, could be overexpressed at similar levels as compared with that of previously reported.

Besides the expression of the engineered enzyme. Shames et al. also described the expression of native enzyme using vector pKK223 [12]. The plasmid pKKCMP.1 was constructed by inserting a 2.7-kb EcoRI/HindIII fragment from pCMP.3 into pKK223. This construct, which contained the wild type Shine-Dalgarno sequence and the native enzyme encoding DNA, was used for expression of the native enzyme. and the expression of about 1.8% of the soluble E. coli protein was obtained. This somewhat low level of expression might be due to the low efficiency of the wild type ribosome binding site. Thus, we tried to express the native synthetase gene by using high efficient ribosome binding site on the expression vector pKK223-3 and pBV220. To carry out these manipulations. the cloned synthetase gene from E. coli 44277 was isolated from pT74 and ligated into the sites between EcoRI and PstI of vector pKK223-3 behind the tac promoter and pBV220

Fig. 4. Analysis of the expression of pET-CS2 in *E. coli* BL21(DE3) by SDS–polyacrylamide gel electrophoresis. A 9.5% polyacrylamide gel stained with Coomassie blue is shown. Lane 1: molecular weight marker; lane 2: host cell lysate; lanes 3 and 4: cell lysate from *E. coli* BL21(DE3) harboring pET-15b without and with induction; lanes 5 and 6: cell lysate from *E. coli* BL21(DE3) harboring pET-CS2 without and with induction; lane 7: induced soluble protein from pET-CS2/*E. coli* BL21(DE3); lane 8: inclusion body from pET-CS2/BL21(DE3) induced with IPTG.

Table 1 Purification of the recombinant CMP-NeuAc synthetase

Step	Protein (mg)	Enzyme activity (U) ^a	Specific activity (U/mg)	Purification (fold)	Recovery (%)
Crude enzyme	1050	99.6	0.095	1.0	100
$(NH^4)_2 SO^4$ fractionation	600	85.4	0.142	1.5	85.7
DEAE-52 chromatography	68	58.9	0.866	9.1	59.1

^aOne unit (U) of activity is defined as the amount of enzyme required to produce 1 μ mol of PPi (2 μ mol Pi) from CTP and NeuAc per minute at 25°C.

behind the P_L and P_R promoters, respectively. However, no recombinant protein was detected in *E. coli* containing either of these two constructs. These results indicated that, in our case, the cloned gene was not readily expressed by the application of high efficient ribosome binding sites on the expression vectors, although both constructs possessed a ribosome binding site at the optimal distance for expression (10-bp in pKK223-3 and 6-bp in pBV220).

3.3. Preparation of modified CMP-NeuAc synthetase

To increase the engineered CMP-NeuAc synthetase production, the culture conditions of the transformed cells were optimized. The maximum production of the enzyme was obtained by growing the transformed cells in LB medium supplemented with 0.1% glucose (containing 60 μ g/ml ampicillin) at 37°C to an OD₆₀₀ of 1.2–1.6 and inducing the expression at 32°C for 4 h using 0.8 mM of isopropyl β-D-thiogalactopyranoside. Under the optimal condition, approximately 100 units of the synthetase were obtained from 1 l of cell culture, while a large portion of the enzyme (about 70%) was found in the insoluble cell pellet. The addition of isopropyl β-D-thiogalactopyranoside at concentrations higher than 0.8 mM caused increased expression of specific 49-kDa protein, however, the enzyme activity in cell extract did not increase. A similar result was also observed when the induction was carried out at 37°C. These results suggest that more insoluble recombinant 49-kDa protein was expressed by the addition of isopropyl β-D-thiogalactopyranoside at concentrations higher than 0.8 mM or by the induction at the optimum temperature. When an exogenous gene is overexpressed in *E. coli*, the folding intermediates would accumulate during the folding of a large quantity of nascent polypeptide. The accumulation of folding intermediate could enhance the interactions of hydrophobic groups on these molecules and cause the formation of insoluble protein. Probably, induction at the temperatures lower than the optimum temperature or by the addition of isopropyl β -Dthiogalactopyranoside at concentrations less than optimum concentration could slow down the synthesis of recombinant protein and therefore decrease the formation of insoluble protein.

The purification of the recombinant enzyme was performed by precipitation with ammonium

Fig. 5. TLC analysis of the reaction product catalyzed by the racombinant enzyme. The synthetic reaction was carried out as described in the Experimental. The synthesized CMP-NeuAc was precipitated with ethanol, lyophilized and then analyzed by the thin-layer chromatography (TLC) using 95% ethanol/1 M ammonium acetate (pH 6.0) (7:3) as solvent. The amount of CMP-NeuAc was determined as 254 nm. Lane 1: standard CMP and CDP; lane 2: control (reaction mixture without enzyme); lane 3: reaction product; lane 4: CMP-NeuAc standard.

sulfate followed by DEAE-cellulose chromatography. The majority of contaminating proteins was removed in the chromatography. As summarized in Table 1, the enzyme was purified ~ 9.1 -fold from the cell lysate in an overall yield of 59.1%. The specific activity of partially purified enzyme was determined to be 0.866 U/mg, which was about 41% of 2.1 U/mg for the purified CMP-NeuAc synthetase [10]. No phosphatase activity was detected in this enzyme preparation.

3.4. Enzymatic synthesis of CMP-NeuAc

The small-scale synthesis of CMP-NeuAc was carried out in ~ 90% yield using partially purified recombinant enzyme as catalyst (Fig. 5). The resultant precipitate in the reaction mixture was removed by filtration. The product in the filtrate was purified by precipitation with ethanol and centrifugation. The purity of CMP-NeuAc obtained from the synthetic reaction was judged to be 95%.

References

- [1] K. Sasaki, Trends Glycosci. Glycotechnol. 8 (1996) 195.
- [2] J.B. Robins, E. Schneerson, W.B. Egan, W. Vann, D.T. Liu,

in: H. Smith, J.J. Skehel, M.J. Turner (Eds.), The Molecular Basis of Microbial Pathogenicity, Verlag-Chemie, Weinheim, Germany, 1980, p. 115.

- [3] K.N. Timmis, G.J. Boulnois, D. Bitter-Suermann, F.C. Cabello, Curr. Top. Microbiol. Immunol. 118 (1985) 197.
- [4] E.L. Kean, Glycobiology 1 (1991) 441.
- [5] U. Kragl, T. Klein, D. Vasic-Racki, M. Kittelmann, O. Ghisalba, C. Wandrey, Ann. N. Y. Acad. Sci. U. S. A. 799 (1996) 577.
- [6] L. Warren, R.S. Blacklow, Res. Commun. 7 (1962) 433.
- [7] L. Warren, R.S. Blacklow, J. Biol. Chem. 237 (1962) 3527.
- [8] E.L. Kean, S. Roseman, J. Biol. Chem. 241 (1966) 5643.
- [9] E.L. Kean, S. Roseman, Methods Enzymol. 8 (1966) 208.
- [10] W.F. Vann, R.S. Silver, C. Abeijon, K. Chang, W. Aaronson, A. Sutton, C.W. Finn, W. Lindner, M. Kotsatos, J. Biol. Chem. 262 (1987) 17556.
- [11] G. Zapata, W.F. Vann, W. Aaronson, J. Biol. Chem. 264 (1989) 14769.
- [12] S.L. Shames, E.S. Simon, C.W. Christopher, W. Schmid, G.M. Whitesides, L.-L. Yang, Glycobiology 1 (1991) 187.
- [13] J.L.-C. Liu, G.J. Shen, Y. Ichikawa, J.F. Rutan, G. Zapata, W.F. Vann, C.-H. Wong, J. Am. Chem. Soc. 114 (1992) 3901.
- [14] J. Sambrook, E.F. Fritsch, T. Maniatis (Eds.), Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
- [15] F. Sanger, S. Nicklen, A.R. Coulson, Proc. Natl. Acad. Sci. U. S. A. 74 (1977) 5463.
- [16] P.A. Lanzetta, L.J. Alvarez, P.S. Reinach, O.A. Candia, Anal. Biochem. 100 (1979) 95.
- [17] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randell, J. Biol. Chem. 193 (1951) 265.
- [18] G.-J. Shen, J.L.-C. Liu, C.-H. Wong, Biocatalysis 6 (1991) 31.
- [19] S.C. Makrides, Microbiol. Rev. 60 (1996) 512.
- [20] M. Gouy, C. Gautier, Nucleic Acids Res. 10 (1982) 7055.